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Abstract—An analytical model for the performance analysis
of a multiple input queued asynchronous transfer mode (ATM)
switch is presented in this paper. The interconnection network
of the ATM switch is internally nonblocking and each input
port maintains a separate queue of cells for each output port.
The switch uses parallel iterative matching (PIM) [7] to find
the maximal matching between the input and output ports of
the switch. A closed-form solution for the maximum throughput
of the switch under saturated conditions is derived. It is found
that the maximum throughput of the switch exceeds 99% with
just four iterations of the PIM algorithm. Using the tagged
input queue approach, an analytical model for evaluating the
switch performance under an independent identically distributed
Bernoulli traffic with the cell destinations uniformly distributed
over all output ports is developed. The switch throughput, mean
cell delay, and cell loss probability are computed from the
analytical model. The accuracy of the analytical model is verified
using simulation.

Index Terms—Analytical modeling, ATM switch, computer
simulation, performance evaluation.

. INTRODUCTION

head of the queue is blocked, all cells behind it in the queue are
prevented from being transmitted, even when the output port
they need is idle. This is calleldead-of-line(HOL) blocking.
It was shown through mathematical analysis and computer
simulation that HOL blocking limits the throughput of each
input port to a maximum of 58.6% under uniform random
traffic, and much lower than that for bursty traffic [4], [5].
Various approaches have been proposed to overcome the
problems associated with FIFO input queueing: adopting a
switch expansion, a windowing technique, or a channel group-
ing technique [2]. In the former case, the internal switch
bandwidth is expanded, using replication for example, so that
it can transmit more than one cell to an output port in a single
time slot. Windowing is a technique conceived to relieve the
HOL blocking by also allowing non-HOL cells to contend for
the switch output ports. In particular, adopting a window of
depthw means that if a cell in positiofy 1 <i < w, (i =1
identifies the HOL position) is blocked owing to a conflict for
the switch output port, a chance is given to the cell in position
¢ + 1 until a search of deptlhy has been completed. Channel

HE ASYNCHRONOUS transfer mode (ATM) has beergrouping is another technique that can be used with input
recommended by CCITT as an integrated transport tedpeueing to improve the switch throughput. In this technique,

nique for future broad-band ISDN. As a result, there is the switch output ports are subdivided into groups of dize
growing interest in identifying suitable switching architeceach and cells address groups, not single links of a group.
tures for ATM. Virtually all proposals of switching fabric Such arrangement is typical of a transit environment in which
architectures for ATM networks are based on self-routingpe switch interfaces a limited number of downstream switches
structures in which each packet autonomously find its pa#hith R links to each of them. Implementing channel groups
through the interconnection network to the desired output pantan ATM switch is a nontrivial task given the high rates of
[1]-[3]. This feature enables the design of switching fabriatie links, since in each slot not only we have to guarantee
characterized by a very high throughput, on the order die absence of external conflicts, but also to allocate at the
gigabits per second. These design proposals were basedransmission time each output port in a group to a specific
various types of queueing strategies: input queueing, dedicaiiggut port addressing that group with its HOL cell.
internal queueing, shared internal queueing, or output queueingf particular interest to us in this paper is a recent technique
[2], [3]. termed parallel iterative matching(PIM) and variations of
Each of these queueing strategies is characterized by certinl, that are used to reduce the HOL blocking [7], [9]-[12].
advantages and drawbacks. The simplest approach, howeve ighis technique. each input port maintains a separate queue
input queueing. In this architecture, each input port maintaingat each output port. During a single time slot, a maximum of
first-in-first-out (FIFO) queue of cells, and only the first cell irbne cell per input port can be transferred, and a maximum of
the queue is eligible for transmission during a given time sladne cell per output port can be received. The switch operation
The drawback of FIFO queueing is that, when the cell at the based on a parallel iterative matching algorithm to find
the maximal matching between the inputs and outputs of the
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df a 16x16 switch exceeds 99% [7]. As a result, this switch
architecture has received a lot of attention from the research
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community, and many commercial and experimental ATM I —

switches based on this queueing technique have already been 2 —— 1 1
built, such as the DEC Systems AN2 switch and the Tiny Tera : —
switch [7], [8]. N

So far, the performance evaluation of PIM switches appear-
ing in the literature have been based on simulation. The main 1
reason for that is the fact that mathematically analyzing PIM 2} 5 P
ATM switches is difficult. The inventors of PIM switches switching "
acknowledge this fact by saying, “In general, it is difficult N fabric

to mathematically analyze the performance of a PIM switch,
even for the simplest traffic models. The problem lies in the
evolution and interdependence of the state of each arbiter and
their dependence on arriving traffic” [7], [9]. To the best of
our knowledge, the research work in this paper is the first
attempt at analytical modeling of the performance of the PIM
switches. Performance parameters such as throughput, mean
fhee” Seerllftjyr,ma;ndcge(llf ISESAEI)'rI\ab:vS:'l[I(%alg(a)rlrg)?grrr:?):]ettg E\e/ﬁlﬁfs‘lgg 1. Architecture of the multiple input queues ATM switcN (x N).
probability requirement of 1@ is not uncommon [14]. As a
result, estimating the rare cell loss probability by simulatiomodel of PIM switches both under saturated conditions,
is inefficient and sometimes impossible [17]. Consequentlgnd i.i.d. Bernoulli traffic. In particular, Section Ill presents
analytical models are of great importance in solving thesecursive equations for the maximum throughput of the
problems. switch. Section IV develops the analytical model based on the
The contribution of this paper is twofold. First, we analyzéagged queuing approach. Equations for computing interesting
the performance of the PIM ATM switch under saturategerformance measures including throughput, mean cell delay,
conditions [23], i.e., assuming that none of tB& input and mean cell loss probability are derived in this section.
gueues is empty, so as to give the maximum throughput Nfimerical results obtained from the analytical model are
the switch. With this assumption, a recursive closed-forpresented for switches of different sizes in Section V, and
expression for computing the maximum throughput of theompared with the results from simulation. Finally conclusions
switch is derived. Using this expression, we show that for osge presented in Section VI.
iteration, the maximum throughput of the switch converges
to 0.632 as the size of the switch increases, which agrees ||. THE SwITCH MODEL AND PIM SCHEDULING
with the results given in [7]. We also show that the maximum
throughput for a switch of any size exceeds 99% with ju

In this section, we present an overview of the PIM ATM
%%Nitch architecture and define the switch scheduling algorithm

four iterations of the PIM scheduling algorithm. It is worth,.
noting that a 100% throughput can be achieved with t |.e(?[;"|:IM). Interested readers may refer to [7], [9] for further

same architecture using a maximum weight bipartite matching
algorithm [25]. Another algorithm in [9] can also achieve .
100% throughput with this same architecture. A. The Switch Model

We then develop an analytical model of the PIM switch The ATM switch under consideration is ai x N non-
with finite input buffers using théagged queuapproach [6], blocking switch, i.e., theN inputs are connected to the
[15], [16]. Assuming an independent identically distributedV outputs via a nonblocking interconnection network (e.g.,
Bernoulli input traffic with the cell destinations distributeccrossbar switch). A cell may be sent from any input to any
uniformly over all the outputs, we compute interesting peeutput, provided that no more than one cell is sent from the
formance measures for the PIM switch including throughpugame input and no more than one cell is received by the same
mean cell delay, and cell loss probability as a function of tHeutput. Each input queue of the switch is a random access
offered load and switch size. The accuracy of our analyticauffer. This random access buffer can be used to consivuct
model has been verified using simulation. The results froflFO queues, each of which is used to store the cells that are
the analytical model match closely with the simulation resultgestined for one of thé/’ output ports. The architecture of this
This model will be extended in the future under more realistRvitch is shown in Fig. 1. The first cell in each queue can be
traffic assumptions such as bursty and correlated traffic. Tiselected for transmission across the switch in each time slot,
will render our mathematical analysis more complex. W&ith the following constraints:
consider the results of this paper as the foundation for solvingl) only one cell from any of théV queues in an input port
the more difficult problem involving bursty and correlated can be transmitted in each time slot;
traffic [24]. 2) only one cell can be transmitted from th&input ports

The remainder of this paper is organized as follows. to an output port of the switch at any given time slot.
Section Il introduces the switch model and PIM scheduling  In other words, at most one cell could be received by a
algorithm. The next two sections present the analytical single output port.
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As mentioned above, the reason for using a random-accesblote that in step two above, the independent output sched-
buffer instead of a conventional FIFO queue is to avoid thders randomly select a request among contending requests.
HOL blocking. Two criteria must be considered for designinghis has three effects. First, Andersen al. [7] show that
the switch: each iteration will match or eliminate on average at 3/4 of

1) the switch must route as many cells among the ones t#a€ remaining possible connections and thus the algorithm
arrived at its inputs as possible to the appropriate outpy#@l converge to a maximal match i@(log N) iterations.
to maximize the throughput; Second, it ensures that all requests will eventually be granted.
2) the switch must solve the output contention problefaonsequently, no input queue is starved. Third, it means that

(i.e., more than one cell can be destined for the sari@ memory or state is used to keep track of how recently a
output port). connection was made in the past.

As a result, the switch scheduling algorithm that decides, for 1° facilitate the mathematical analysis in the rest of the
each time slot, which inputs transmit their queued cells R#P€r, we modify the above PIM algorithm. However, the

which outputs is of paramount importance. One such effectifdified PIM algorithm idogically equivalento the original
algorithm is PIM [7], [9]. PIM algorithm. As a result, the performance analysis of the

modified PIM algorithm is exactly applicable to the original
PIM algorithm. The modified PIM algorithm iterates the
B. PIM following two steps until a maximal matching is found, or

' until a fixed number of iterations are performed:

For switches used in high-performance ATM networks, the 1) each unmatched input chooses an outmiformly over
switch scheduling algorithm must be able to provide high ~ 5 ynmatched outputs for which it has queued cells and
throughput, low latency, and graceful degradation under heavy  ¢ongs a request to it;
traffic loads. Andersoet al. [7] considered the architecture of 2) if an unmatched output receives any requests, it chooses
a nonblocking switch with random access buffers (as shown in oneuniformlyover all requests to grant and notifies each
Fig. 1), and cast the switch scheduling problem as a bipartite requesting input.

matching problem of finding conflict-free pairing of InpUtSl’he logical equivalence between the modified PIM algorithm

to outputs [13]. The high throughput and low latency of alnd the original PIM algorithm can be easily derived from

ATM switch dictates that the scheduling algorithm must bt"?1e above description of the modified PIM algorithm. If we

able to find a matching of as many conflict-free pairings as 5 . . 2
possible, using as little time as possible. Note thataximum fégroup theN™ queues according to their destination outputs

matchingis a matching with the maximum number of paire(IInStead Of. being grouped_ by _the mpy_ts, the original PIM
. . . o . ! algorithm is now mapped into its modified counterpart. The
inputs and outputs, whilmaximal matchings one in which no

. X maodified algorithm can thus be viewed as a mirror image of the
unmatched input has a queued cell destined for an unmatched: . . .
: X . ofiginal PIM algorithm, with the roles of the input and output
output (i.e., no parings can be trivially added). Unfortunately, . o . i
. T . . . orts switched. For the modified algorithm, the input selects
all of the conventional bipartite maximum matching algorithm o
o . ) : .among all unmatched outputs for which it has cells queued.
have high time complexity with regard to the time constraint,_. > . - .
. o . his is similar to thegrant step of the original algorithm.
imposed by 53-byte ATM cells and gigabit per second I|nk%. . . . .
. . imilarly, step two of our algorithm is equivalent to thecept
As a solution, Andersoat al.[7] proposed an algorithm, called - .
) . . ; . . step of the original algorithm.
parallel iterative matchingto find a maximal matching. . o
! . In the rest of the paper, we will not distinguish between the
The algorithm proposed by Andersehal. uses parallelism, . . s ) .
. . ! ) . ariginal PIM and the modified PIM since they are essentially
randomness, and iteration to find a maximal matching betwe%n
) o € same.
the inputs that have queued cells for transmission and the
outputs that have queued cells (at the inputs) destined for
them. Maximal matching is used to determine which inputs
transmit cells over the nonblocking switch to which outputs
in the current time slot. Specifically, their matching algorithm Ill. M AXIMUM THROUGHPUT OFMULTIPLE
iterates the following three steps until a maximal matching is ITERATIONS PIM
found or until a fixed number of iterations is performed. First, the ATM switch with one iteration PIM is analyzed.
Request Each unmatched input sends a requesgstery Then, a recursive formula for the throughput of the switch with
output for which it has a queued cell. multiple iterations PIM is derived. Under saturated conditions,
Grant If an unmatched output receives any requestsll the queues at each input will have at least one cell. An
it grants to one byandomlyselecting a request output selects one uniformly among the input requests.
uniformly over all requests.
Accept  If an input receives grants, it accepts one by _
selecting an output among those that granted fo Throughput of One Iteration
this input. The throughput of an ATM switch with one iteration PIM
By considering only unmatched inputs and outputs, easbhedulingp(1) is equal to the probability that an outpG;
iteration only considers connections not made by earlier itagets matched after the first iteration. Since each output selects
ations. uniformly from all of the input requests, the probability of an
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input request being accepted by an output 1/N. Then

-2 () e ()

k=0
lim p(1) =1—c¢ ! =0.632. (1)

N—oo

Let Pr{m(1)} be the probability thain(1) inputs (outputs)
get matched and outpd?; remains unmatched after the first

iteration, then

Pr{m(1)} = <]:7n(_1)1>m(1)!5§\7’(1))/NN )

where S{™ is the stirling numberof the second kind which
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Fig. 2. Maximum throughput as a function of switch size and number of
iterations.

gives the number of ways of partitioning a setroklements iteration scheduling. This is given in a recursive form by
into . nonempty subsets. It can be computed by the closed-

form expression [22]

m 1 - m—~K m 2l
s = 25 k(k)k .
" k=0

Pr{n(2)}

N—(i—1)

= 2

n(i—1)=n(i)+1

Pr{m(i) =n(i — 1) — n()} Pr{n(i — 1)}

3
In (2), m(l)!S](\i"(l)) accounts for the number of possiblevhere
cases in whichV inputs contend for the givem(1) outputs n(i—1)—1 ‘ ‘
with the condition that each output is requested by at ledt{m(i)} = < (i) )m(z‘)!Sfl’(';(z)l))/(n(i—l))"(z—l).
one input.

Let Pr{n(1)} denote the probability that(1) inputs (out-

Using (3), the throughput aofiteration PIM scheduling can

puts) remain unmatched after the first iteration with the coRe derived as follows:

dition that outputO, remains unmatched, thafr{n(1)} =
Pr{m(1) = N —n(1)}.

B. Throughput of Multiple Iterations

N—(i—1)

pi—D+ >

2 )

-Pr{n(i — 1)}.

p(1) =

The throughput of two iterations PIM scheduling is equal

to the sum ofp(1) and the probability that outpuD; gets
matched in the second iteration, that is

p(2) = p(1) + Pr{output O; gets matched in the second

iteration}
N—1

=)+

(=1 <1 - <1 - %)"‘”) Pr{n(1)}.

Fig. 2 shows the results for the maximum throughput of
a PIM switch as a function of switch size and number of
iterations. As shown in this figure, the maximum throughput of
an ATM switch with one iteration PIM scheduling converges
to 0.63 [which corresponds to (1)] when the switch size grows.
Furthermore, the throughput increases significantly after each
iteration of PIM scheduling. Four iterations are sufficient for
achieving maximum throughput of about 99% for a switch of
any size.

Similarly, we can derive the throughput of three iterations

PIM scheduling as follows:

p(3) = p(2) 4+ Pr{output O; get matched in the third
iteration}

N-2 1 \"®@
=p(2)+ > <1_ 1——— ) Pr{n(2)}.
it < n(2)>

To derive the throughput dfiterations PIM scheduling(z),

IV. QUEUEING MODEL AND ANALYSIS OF
MULTIPLE ITERATIONS PIM

In this section, we model the ATM switch with PIM
scheduling using queueing theory and analyze the underlying
Markov chain. Our method uses the conceptagfged queues
in modeling the PIM switch leading to a smaller state space.
The concept ofagged input queubas been successfully used
to evaluate the FIFO input-queued switch model [6], [15], [16].
These switches involve a single stage of contention resolution.

we first derive the expression for the probability that thet®n the other hand, for the switch with PIM scheduling,

are n(¢) inputs (outputs) remaining unmatched after thie

the contention resolution process consists of two stages. As



64 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 1, FEBRUARY 1999

Tagged input queue and are ordered in a lexicographic order, i.e.,
= }_Lm__ st HOLinpul quene 1st HOL outpul queuc
G i) S pauinb PR
Tk AT T ety :UIEUJ——I’ (0,0,0),(1,1,1),(1,1,2),---,(1,2,1),(1,2,2),- -,
O 7 e
(b;, N, N).
wiia=2"| 1+ :
RGNCE S S . The set of states
Lix— T
{(lv 17 1)7(17 17 2)7 T (lv 27 1)7 (lv 27 2)7 T (lv N7 N)}
Ak:m will be labeled as states in levél of the Markov chain.
2T L. (Note that when the tagged input queue is empty, we are not
S — interested in the lengths of the HOL input queue and the HOL

output queue. Thus all states with= 0 are collapsed into a
single statg0, 0, 0), i.e., we are not explicitly keeping track
Fig. 3. An example of the queueing model for the PIM switch. of the state of the HOL input queue and the HOL output
queue when the tagged input queue is empty.) This Markov
chain has two important attributes, namely: 1) in moving from

observed from the algorithm descriptions of PIM, a HOL cethe state § w;, w,) to a state {+ ¢, w;, wy), for i = 1, the

in an input queue will contend for transmission not only witl§hain must visit all intermediate levels at least once and 2)
the HOL cells of the same input, but also the HOL cell§1is Markov chain is uasi birth and death (QBDprocess,
destined for the same output. As a result, the correspondifiih block-partitioned form of transition probability matrix.
model is more complicated than for the FIFO input-queue-Ehese attributes enable us to solve the Markov chain in an
switch. We make the following assumptions in developing tH&cursive way as we will show in the Appendix. The transition

inputs
outputs

PIM switch model: probability matrixZ’ of the Markov chain is defined as follows:
1) the switch operates synchronously; rC, Cs O 1
2) every input queue has the same buffer size, namely Co AL As O
3) cells arrive at the inputs according to &ird. Bernoulli 0 Ao A A, O

process with parameteNA (0 < NA < 1). The p_ [0 0 Ay A Ay 0
destinations of the cells are uniformly distributed over : : : : :

all the outputs. Only one cell can arrive at each input in 0 0 0 - 0 - 0 Ay A A

a time slot. For anV x N switch, if an input’s load is

N, then every queue at this input has an offered load L0 00 e 0 00 Do Dl

of A; whereC1+Che =1 and00+(A1+A2)C = (A0+A1+A2)6 =
4) new cells arrive only at the beginning of the time slot§.D, 4 D;)e = ¢, ¢ is a column vector of ones of length?.

and cells depart only at the end of the time slots. Let

Under the above assumptions, all the input queues will

exhibit the same behavior when the system attains steady-statB,,, v, (u/, w,)|W,_, (w;, w,) <P{,10, W, (w!, w! )| Wo 1 (w;, wo)>
A queue at input with output;j as the destination is denoted R
by Q(i, 7). Fig. 3 shows an example of the queueing mod(a
for the PIM switch. In this example, the occupancy(l, 1)
is taken as theagged input queuyghe number of HOL cells
at input 1 is represented by thst HOL input queueand the

<Psuc, Wi (w], w) ) |[We_1 (w; wo)>

Ienote the probability that the HOL cell of the tagged input
gueue is blocked, and

number of HOL cells addressed for output 1 is denoted bypsuc, Wi (w], wl)|We—1(w;, wo)
the 1st HOL output queueBoth theHOL input queueand the
HOL output queuere virtual queues which do not exist in ajenote the probability that the HOL cell of the tagged input
real PIM switch, but are useful for our mathematical analysigueue is transmitted given that the remaining HOL cells at the
end of the last time slot i6w;, w,), the remaining HOL cells
at the end of the current time slot (&%, w/) and there is a
A. Markov Model . . ) :

new cell arrival (is no new cell arrival) at thiagged input

Analyzing the queueing model of the PIM switch requiregueueat the beginning of the current time slot. For the first

the construction of the underlying Markov chain The states case (there is a new arrival cell at ﬁwged input queuat the
of the Markov chainz are sampled at the end of the time slotgeginning of the current time slot), we define three matrices
and can be expressed as a tridlet W;, W), whereL, Wi, B, B, andsS as (4)—(6), shown at the bottom of the next page.
and W, refer to the lengths of thteagged input queue, virtual  |n case there is no new cell arrival at thegged
HOL input queueandvirtual HOL output queugrespectively. input queue at the beginning of current time slot, we
The state-space of this three-dimensional Markov chain is define three matrices’, B}, and S’ similar to as B, By,

and § by replacing P, w, (W, w) ) [Wy 1 (s, w,) in Bwith

) ,
100,0,0), (L ws, w1 S U< bl S wy S Ny 1<w, < N} Dbl watwl, wp)Wems s, we)yr ot Wt wpiwioa0,0) 1 Bo
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With By, 1t o011 (00) @A Pruie, W, () W (w,00) (i) — () - W, )
NS With Pl )Wy s, w,)» TESPECIVELY. Arriving HOL PIM algorithm
By using the above equations, the element matrices in the cells (k;k,) to find maximal
transition probability matriXl” can be computed as matching
Fig. 4. Transition of the virtual HOL queues.

CO ISIG Cl Il—Bo@ CQ IBO
Ag =5 A =5+5B Ay =8B beginning of current time slot. Note that since only one
Dy=S+5 D, =B+ B. cell can arrive to an input in any time slot, thérg &; < 1.

. _ ) . Wi_1(w;, w,) denotes the numbers of remaining HOL cells at

The remaining subsections will cover the computation e irtyal HOL input/output queuéw; /w, is length ofvirtual
the success and blocking probabilities we defined aboyge input/output queye at the end of the previous time slot
1 /
I.€., PSUC7 W), wi)[Wi_1(we, wo)s PS/UC, Wy (w], w)|We 1 (wi, w,)! t—1. Let Ht(hi, ho) = Kt(]ﬂ}i, ]ﬂ}o) + Wt_l(wi, wo). Define,
Phto, wi ot wy)IWer (s, we)s AN Bty vws ) Wy (w0 @, e, k)W i w0) = PEH{E (R, By Bo)[Wea (i, w,)}.
respectively. Provided that these probabilities are computeat po be the probability that an input queue is empty in a
the transition probability matriX” can be constructed. Oncetime slot, wherepg = (1 — \)mo, and letp; = 1 — po. Two
the transition probability matrix is known, it is a routinedifferent cases need to be explicitly considered: a) when the
matter to derive the steady-state equations by utilizing thegged input queu€(:, 5) is nonempty and b) whe@(i, ;)
properties of Markov chains, and solving the equations empty.
to obtain the steady-state probability vector. The steady-Case (a): Since the tagged input queu€)(i, ;) is
state probability vector of the Markov chaifi is given by nonempty, bothw; > 0 andw, > 0. If the current state is
Il = [ro, m1, m2, -+, m, -+, m,,], where every element (7, w;, w,), (N —w;) input queues of inputand (V —w,) jth
= [W(z,l,l), (1,2 " TN, N)]_, [ > 0 is a row vector _input gueues of other inputs will be empty. In the following,
of size N2, andr is a scalar. Detailed procedures to obtaifet &, = 0 denote that no cell arrives to the tagged input
the steady-state probabilities are presented in the Appendiueue in the current time slot, and let = 1 denote that a

cell arrives to the tagged input queue. Hence,
B. Computing the Blocking and Success Probabilities

. . . AR (K, ks k)W (w; . w
We now derive the equations for computing the bIocklngI‘(’””“”‘”)'w( o)

probability 1, W (!, w!) Wy (w;, w,) and the success prob- ( <N - wo) Aka+1(1 — \)N=wo—ko
ability P, w, (!, w0l ) Wi 1 (w, 1,) The transition of the state ko
of the virtual HOL input/output queues from the stéig, w, ) ke =1,k =00k, <N —w,, 1 Lw;, w, <N.
to state(w’, w!) is a two-step process. N —wo\ 4. Newo—k,
1) First, we account for the newly arriving HOL cells to = (L= (N —wi+ 1))\)< ko )A (=%
the virtual HOL input/output queues. ke =0,k =00<k, <N—w,, 1<w, w, <N.
2) Then, we consider the transition from the intermediate N — w
state to the final state after applying the PIM algorithm. (N - wi)< I 0))\’“0“(1 — N)N-we—ko

This process is illustrated in Fig. 4.

1) Arriving Cells at Virtual HOL Queuesiet K,(k:,k;,
k,) denote the number of newly arriving HOL cells at Case (b): As stated earlier, when the tagged input queue
the tagged input queue/virtual HOL input/virtual HOLis empty, we do not explicitly keep track of the state of the
output queuedk:/k;/k, new arrivals to thetagged input virtual HOL input queues and HOL output queues. In this case,
queuelvirtual HOL input/virtual HOL output queyeat the all such states are collapsed into the single stat®, 0) with

\kt:()aki:]-voskoSN_wov1Swi7woSN-

Bo = [Prlo, W, (1, )|Wi_1(0,0)»  Phlo, We(1,2)[Wi_1(0,0) " » Phlo, Wy (N, N)|Wt—1(0,0) ] (4)
[ Poo,w, 1, 0w, Polowa, w1y Polo, wo (v, My w1, 1)
Poo,w, (1, D)W (1,2)  Polo,wo@,2we_i(1,2) 0 Polo, wu (v, M)[Wi_1(1,2)

B=| Poo,wi,)iwii1,3) Polowi,2)wei1,3) 0 Plo, wi (v, MIWi_1(1,3) (5)
LPolo, w, (1, DIW,_ (N, ) Polo, w1, 2w (N, N) 7 Bhlo, (v, M)[Wi_ i (N, V)
[ Poue, w1, DWW (L, D) Psue, W, Wi, 1) " Poue, W (v, MIW_1(1,1)
Powe, w,(, 0w, 1(1,2) Paue,wo,2wi,2) 0 Paue, woov, Myiw 11, 2)

S = | Pove,wi,)w,1(1,3) Do, win, 2w (1,3) 7 FPoue, W, (v, M)|Wi_1 (1, 3) (6)

L suc, Wi (1, 1)|W,—1 (N, N) Psuc, Wi (1, 2)|W,—1(N,N) " Psuc, W (N, N)|W,_1(N,N)
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w; = w, = 0. When a cell arrives into the empty tagged input TABLE |

queueQ(i, j), we have to explicitly restore the states of the TRANSITIONS FROM (2, ho) TO (w], w},)

virtual HOL queues. This is accomplished as follows. A cell €. j) (wi, wy) Probability
that arrives atd(i, j) whenQ(i, 5) is empty will observe that ~ blocked: (hi, ho) Dolo 00 H(hs. hp)
another input queue at inputis nonempty with probability (27 u _hl) Ilzblo-m‘””" ho)
(1—mo). Similarly the cell will observe that gth input queue (h(i _;1,7 1)1) PEZT;:Z;Z : ;
at other input ports is nonempty, with probability Successiul- (hi —1, ho — 1) Pl tithe )

N—-1\/N-1 G
K (1, ki, ko)|W(0,0) = )\<k< _ 1) <k _ 1)(1 — mo)i Tt

_W(J)\’—kipllco—lpé\’—ko7 1< kis ky < N; w; = w, = 0. Poucj(n,,n,y  Pr{ the HOL ceII. at the tagged input
queue gets transmitted, akid, (w’, w!) =

In this case, we reinterpret thg and k, as if they represent H(h; — 1, h, — 1) given Hy(h;, h,)}.

the number of arrivals into the virtual HOL input and output Taple | summarizes the transitions and their corresponding

queues in order to restore the states of the corresponding H¥spapilities.

queues. Thert,(h;, ho)Ki(k;, ko). With respect to whether there is a new arrival at the

2) Transition toW, (wj, w;,): Having determined the num- t394ed input queuer not, the two blocking probabilities of
ber of cell arrivals to the virtual HOL queues, we now considep, | Wi (e )| War ) and Py, . W )
O, Walw, we )| Wi—1{wi, W, o, Wy (w!, w )Wy 1 (wi, wo

the transition from the intermediate state to the final state aftgr, computed as follows.
applying the PIM algorithm. Given r; = w, — w; andr, = w’ — w,, the blocking
Given that thetagged input queue(, j) is nonempty, oonanility Py, Wf ! | We s (. 00) is computed as shown
the inputs excluding input are divided into two subset®' iy (7) 4t the bottom of the next pja\ge, in which
and F' according to whether thgth queue of the inputs is
empty or not. The cardinality of these sets & — w,) and
(w, — 1), respectively. The state of sefs and setF" will )
affect the transitions ofirtual HOL input queueand virtual lig(w) =
HOL output queueFor the HOL cell of the tagged input
gueue, its contention process can be split into two stages. In
the first stage, the tagged input queue contends with other
nonempty queues at the same input. If it succeeds in the firéf)( )
stage contention, it joins the second stage contention with all
successfulith queues from other inputs. LX<, k)(k # j)
be the successful queue at inpuf Q(i, 5) is blocked in the Ljb(w) =
first contention stage.
Given Hy(h;, h,) and Wi (w}, w!), the possible values of u
W, in terms of H, are

=

forw =0
<w> wPi (1 — Py)*™, forw>0 (8)
U

forw =0

<Z> uPl'L;l(l — B, forw >0 ©)

forw =0
(10)

1+ = i0M: S 1M

<Z> WPl (1= Pl e, forw > 0.
1

lio(w) represents the average numberuofnput queues that

(hi; ho) contain only one buffered cell, with condition that there is a
(wh, w!) = (i, ho —1), for 2, > 0 new arrival cell at thetagged input queue(i, j). P in
E}}? - 1’ Zo)’ n ;g: 27 i 8 andh > 0 (8) is the probability that the length of a queue of the

input queues of input is equal to one (there is only one
The last caséw’, w’) = (h; — 1, h, — 1) can result from two buffered cell in this input queue) during a time slot. Similarly,
situations: 1) when the HOL cell from the tagged input queugs(w)/1j5(w) represents the average numberofjth input
Q(4, 5) gets successfully matched or 2) another qu@gée k) queues that contain only one buffered cell given 0Qét, ;)
gets successfully matched, and the outpuglets successfully is nonempty/empty at the beginning of the current time slot.
matched to another input. We define the following probabilities;;; and Pl’j]L in (9) and (10) are the probabilities that the

associated with the above transitions: length of a queue of the jth queues is equal to one in these
Pyto_o0|H(h:, 1,y Pr{ the HOL cell at the tagged inputtWO cases. The three probabilities Bf;1, F;1, andPl’j1 are
queue gets blocked, and,(w), w,) = thus given by
Hy(h;, h,) given Hy(h;, h,)};
Pyo_ovr(ni,n,) Pr{ the HOL cell at the tagged input Py =mie/(1 —mo)
queue gets blocked, and;(w}, w)) = Pij1 =(1 = Nme/(1 —m)

Hy(h;, ho — 1) given Hy(h;, ho)};
Pyio10/H(hi, 1,y Pr{ the HOL cell at the tagged input
queue gets blocked, and/;(w}, w)) = , )
Hy(h; — 1, ho) given Hy(hq, ho)}; FOr Blio w, (w!, w)IWy 1 (w:,w,)» _there is no new cell
Pr{ the HOL cell at the tagged inputamval at thetagged input queueThe blocking probability

, -y
queue gets blocked, ant,(w], w)) = * blo, Wi (w), w))[Wi 1 (w;,w,) €8N be computed similarly as

Hy(hi — 1, hy — 1) given Hy(h;, ho)}; Poto, W, (w, w! ) [Wi_1 (w1, 0,) provided thatlio(w) is replaced

Pl = (o + (1= A)mie)/(1 — o).

Pyro_111H(hi, o)
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with i (w) as
lig(w
Psuc «(w’ t—1(w;, w - Wi, W,
4 O7 fOf w = 0 W, ( I o)lm 1( i3 0) al‘(l kuk )lm( i3 o)
w ’ Psuc|H(k-—|—wg,k +w,) (12)
w /
Z <u> PSUC wt(wzf o)lwt l(w77 wo) _aIS(O ki, ko )|W (ww LUO)
— u=1 .
=T - (Vw1 )+ A (u—1) Pousel ks 4o, ko) (13)
1— (N—w+1)A _ _
| P (1— Py, for w> 0 3) Applying the PIM Algorithm:We now compute the

probabilities in Table | by considering each iteration of the
(11) PIM scheduling algorithm. The state of the switch at the
. . beginning of each iteratio# is characterized by the following
andag(, ..., .)jw (..., IS replaced withuy (o, .., .y (.-, ~):  parameters:

Finally, we can compute the two success probabllltles n(¢) number of unmatched inputsioutputs at the begin-

Psuc W (wh, wl,) | We—1 (w;, wo) and P. suc Wi (w!, wl, )| W1 (w;, wo) ning of d)th iteration;

w) W1 (wi, w,)
(0, forr; < —1orr, < —1

Polo, W, (w

i o

al . /
al\'(l, i, To ) |W(wy, 'wo)Pblo_OO| H (w!, w]) + al\'(l, i, To+1)|W(w;, 'zuo)Pblo_Ol | H (w], 'wg—l—l)l‘lo (7 o)/wo

Lio(ro — 1))

+al((1, i, To ) |W (w;, 'wo)Pblo_01| H(w!,w!) 1- ;
e w) —1

o . /
FAK (L, 741, 7o) W (wi, wo)Pb1o_1o|H(w;+1, w[,)lLO(7 i)/ w;

lio Ti — 1
FAR, i, o)W (w1, wo) Polo_10]H (w!, wy) <1 - (,4_1)>

w;
FAK (L, rit1, 1o +1) W (02, wo) Polo 11| H (w41, w! +1) * W
FAR(, 141, 10) W (w1, w0) Pblo 11| H (! 41,007 ~ Holra)(re (1w_ l_jél()% — 1)
FAK, i, 1o +1) W (s, w0) Pblo 11 F (!, wr +1) - ri =1 (_wiL(J_(7lz)_. 1?)1‘ )
AR v, )W o, wo) Poto 111 (w0l wg) — MO&% - 11)))( 7(w'_—1 1—)%(% =,
_Jforrm>1,r,>1,w; =0, andw, =0 Z 0 (7)

QK (1, v, 7o) |W (s, w,) Plo 00 H (w0, wr)
FAR (1,1, 10 1) W (07, w00) Polo 011 H (!, w0z +1) * (To + 1+ Ljo(we — 1)) /wy,
FAI (1, s, 70) W (s, w0) Pblo_01 | H (!, w0r) * (Wo — 1 = Ljo(we — 1)) /(w;, — 1)
+CLK(1,T7-+1,ro)|W(w7-,wD)Pblo_10|H(w;+1,wg) (s + 1+ lig(w; — 1)) /w)h
FAR s, o) W (s, wo) Pblo_10] H (! ) - (Wi = 1 = lio(w; — 1)) /(w] — 1)

(ri + 14+ lio(w; — D)(ro + 1 + Ljo(w, — 1))
FAR (L, 141, 1o+ )W (w1, w0) Pblo 11 F (w0 41, w0, +1) ;

!
w; - w,

+aK(l ri+1,ro)|W(w;, wo)Pblo 11| H (w]+1,w])

+14+10 wz—l w, — 1 — ljg(w, — 1
( of I gy of ) + aK(l,1*7-,7‘o+1)|W’(w7-,'wo)Pblo_11|H(w§,w[,+l)

i+ (wg
(wi =1 = lig(wi — 1))(ro +1+lJo( -1)
(wj=1)-w

FOR (1,1, 70) W (s, wo) Plo 11 H(w!, 1) -

w; — 1-— lLo(w7 — 1))(1110 —-1- ljo(wo — 1))
(wj = 1) - (wj, = 1) ’

 forr; > —1,r, > —1,w; >0, andw, > 0
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h;(¢) number of nonempty queues in inputat the be- 0 p?
ginning of ¢th iteration, whose outputs are still Plo_00i00 blo_10I10
unmatched;

ho(¢) number of nonemptyjth queues inn(¢) inputs
(including inputz) at the beginning ofsth iteration

matching. )P/lo .
suc
At the end of the iteration, the following parameters can @
be defined:

m(¢) number of inputs/outputs that get matched at the end
of ¢th iteration,m(¢) = n(¢p) — n{e + 1);

Ah;(¢)number of outputs whose corresponding nonempty
gueues in inpui that get matched at the end ¢th
iteration, Ah;(¢) = h(¢) — hi(¢p + 1);

Aho((/))number of inputs in sef’ that get matched at theFig. 5. The matching process state transition diagram.
end of ¢th iteration, A, (¢) = ho (@) — ho(p +1).

For the sake of simplicity, we do not mention the iteration £i0_11j01 Pr{ at the end of current iteration, the HOL cell

o
Pblowl 1110

blo_01101

number in the following discussion. If no iteration number is at the tagged input queue gets blocked, and input
mentioned, then the current iteratignis implied. ¢ gets matched given that inpuitvas unmatched
Let x;z; represent the state of the matching process for and outputj was matched at the beginning of
input i and outputj of the switch, wherer;, z; € {0, 1} current iteration; -
with O representing that the input/output is unmatched andZb_t0j10 Pr{ at the end of current iteration, the HOL
1 representing that the input/output is matched at the end cell at the tagged input queue gets blocked, and
of the current iteration. The possible states of the matching outputj remains unmatched given that input
process are 00, 01, 10, and 11. However, the state 11 should was matched and outpgitwas unmatched at the
explicitly consider if the tagged input quedg(i, j) at input beginning of current iteratiopn

i is matched. Thus, the state 11 is split into twik,,. Py 11110 Pr{ at the end of current iteration, the HOL

and 11;,,, respectively. Given the current state of the switch

cell at the tagged input queue gets blocked, and

(n(¢), hi(¢), ho(¢)) and the current state of the matching output j gets matched given that inputwas

process:; z;, the resulting state of the swit¢h(¢+1), h;(¢+
1), h,(¢ + 1)) and the resulting state of the matching process
z;x’; is controlled by the transition probabilities defined: suc|00

Py _00j00

Pyio_01)00

Pyio_10100

Pyo11100

matched and outpuj was unmatched at the
beginning of current iteratign
Pr{ at the end of current iteration, the HOL cell

Pr{ at the end of current iteration, the HOL cell at the tagged input queud(i, j) gets matched

: with outputy given that input and outputj were
.at the btagged nput queue .gets blocked, aqd both unmatched at the beginning of current iteration
input ¢ and outputj remain unmatched given

that both inputi and outputj were unmatched These probabilities are functions of the current state of the
at the beginning of current iteratipn switch (u(¢), hi(#), ho(¢)). The transitions among the states
Pr{ at the end of current iteration. the HOLOf the matching process can be represented by the state
cell at the tagged input queue ge:ts blocke ransition diagram shown in Fig. 5 with the state space

input ¢ remains unmatched and outpgitgets {00, 01, 10, 11}, 115,.}. We derive equations for the

. o - transition probabilities next.
matched given that both inputand output; ) . . .
were unmatched at the beginning of currer]ft We define the following probabilities associated with the

iteration}; irst stage of contention for a cell:

Pr{at the end of current iteration, the HOL cell Fsucie Pr{the HOL cell atkth (k # j) queue of an input
at the tagged input queue gets blocked, input in setE succeeds m the first stage <_:onter_1t|on}
gets matched and outpytremains unmatched £ sueis: Prithe HOL cell atjth queue of an input in set
given that both input and outputj were un- F succeeds in the first stage content|0n}_
matched at the beginning of current iteraion £ »uci-se Pr{the HOL cell atkth (k # j) queue of an input
Pr{ at the end of current iteration, the HOL in set F' succeeds in the first stage contention}
cell at the tagged input queue gets blocked, and Here, Fouci_e; Fouct_gt, @nd Poue1_ge are functions ofpo,
both inputi and outputj get matched given that and are computed as

both input: and output; were unmatched at the 1— 7(8/—1
beginning of current iteration Povet_e = Th_1
Py o1j1 Pr{ at the end of current iteration, the HOL n 1
cell at the tagged input queue gets blocked, and P,y s = Z <n )(1 - 7r0)('”_1)7rén_v)/v
input ¢ remains unmatched given that inpit -l
was unmatched and outpjitvas matched at the 1— Poci_pt

Psucl_fe =

beginning of current iteratign n—1
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o} ol 0
H n-1-m outputs -
:_. ; () L0/

F get matched is

ho —1\ [t —ho+1
Ah, m — Ah,

n-1 inputs n-1 inputs
S Paj, 0100000 = ;
m outputs < )

O m outputs m

Annotation: . N .

®——input i ¢ Knowing the above probabilitiesf’,,_ooj00 Can be easily

O outont computed as

put j

@) (b) n—1
_ _ . 1 n— h,
Fig. 6. Diagram for deriving Pyio_oojo0: Phlo_o1j00s Polo_tojoo, and  Fhio_oojoo = | 1 — h Z t—h +1
Pyio_11)00- v o

t=max(m, ho—1)

* Cang|bto_00_00L AR, [blo_00_00 % —m|b1o_00_00-
Lett(max(m, h,—1) < ¢t < n—1) be the number of queues i i _
excluding the queue from inpithat succeed in the first stage 2) €Omputingl,i, 10j00: In this case, input gets matched
of contention, andn is the number of outputs contended folVhilé outputj remains unmatched. Hence, we compute only
by thet inputs. There are three subproblems to be considerd&§ a9gregated probability over the set of all possihle, .
in computing the transition probabilities ith iteration given The probability that the queue that succeeds in the first stage
(n(6), hi(), ho(@)) and (n(p+ 1), hi(¢ + 1), ho(¢+1)). Of contention at inputi succeeds in getting matched in the

1) What is the probability that inputs contend form second stage of contention is

outputs? tmmtl 1
2) What is the probability thahh, inputs in sett” (whose P, pi0_10.00 = < )—(m — VISP, et
. . . _ ) =t — k k + 1 —e
cardinality ish, — 1) get matched- k=1
3) What is the probability thatAh; out of h; outputs a1t pho—1
whose corresponding queues in ingutire nonempty 0 sucl-fe
get matched? =(1- " (mIS + (m — 1)IS*h)
. . . t + 1 t t
The equations below consider each of the subproblems in . -
computing the transition probabilities. L Pt =) (n=1= )PS’;;I_lfe.

We first consider the situation where both inpaind output - ] _
4 are unmatched at the beginning of the current iteration. Fig.T§€ probability thatAh, inputs which are elements of sét
shows the possible scenarios that can arise in this case. C3glematched is

a) represents the situation where outputmains unmatched
. i he —1 t—h,+1
at the end of the current iteration, and case b) represents the Ah -1 Al
situation where outpuj gets matched. P, blo10.00 = o m = 2o
a) ComputingP,i,_oojo0: In this case both input and < ¢ )
output 7 remain unmatched. From Fig. 6(a) giverand m, m—1
the probability that the queue that succeeds in the first Stagel’?lferefore P is given b
contention at input gets blocked at its corresponding output is blo-t0j00 1S G y
1 n—2
t—m+1 _
t 1 Pilo_10/00 = <1 - —> < )
P vio = 1— —— — 1) hi)\m—1
t—m|blo_00-00 Z <k>< i+ 1>(m ) .
k:11ti+1(1)(1f)i1 Z <n_h°>
. S'rn—‘ P —hs T n— n—1l—t PLO? B
t—k sucl_e 0 sucl_fe t=max(rnfl, hofl) t ho + 1
m m m—
= <1 - m)(m!st + (m— 1S “Pan, |b10_10_00 - Fr—m|blo_10_00
-Pstl;:’lbjjlwé"_l)("_l_t)PS’;oczlfe, ¢) ComputingPi,_01j00: IN this case, outputj gets

matched while inpui remains unmatched. We compute only
Among them outputs that get matchedyh; of them will see the aggregated probability over the set of all possihle;.
their corresponding queues in inpitbeing nonempty. The There are two cases to be considered hereQ(®, j) fails

number of combinations satisfying this condition is the first stage of contention, and (#)(¢, j) survives the first
stage of contention. ThereforB,,;, 100 iS the sum of two
h; — 2 n—h; iliti
i i probabilities
Canmaosnon( n ) (0T Ns ) @9

_ _ _ - _ Prio_01]00Pb10-01_Bl00 + Dhio_01_s]00
Given that input: is blocked, it is clear that each combina-

tion of m out of ¢ inputs gets matched with dual probabilitywhere P, _o1_gjoo @nd Piec_01_sj00 @re probabilities for the
The probability thatAh,, inputs which are elements of the setwo cases (i) and (i), respectively.
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Case (i): Q(¢, y) fails in the first stage of contention

iy n—nh
2 <t—ho+1>

t=max(m, h,—1)

h, —1
< " CAh, |blo_01_B_00

Bilo_o1_Bjoo = (1 — 1/h;)
min(h,—1,t—m+1)

u=1
U
: Pt—>rn|blo_01_B_00
where

U
Pt—>7n|blo_01_B_00

t—(rn—?—l—u)

- ¥ ("3 (1 gy ) - 2tsi,

. pu Pho—1—'uPt—ho+17r(()n—l)(n—l—t)

sucl_ft+ sucl_fe * sucl_e

m—1 m— m—
= <1 - m) ((m = DS 4 (m = 2)18727%)

. p* Pho_l_uPt_h"—i—lW(()n_l)(n_l_t)

sucl_ftf sucl_fe * sucl_e

Cah;[blo_01_B_00

- hi—2 ﬂ—hi
T\AR =2/ \m = AR

Case (ii): Q(¢, 7) is successful in the first stage of con-

tention

1 it n—nh
Prio_01_5_00 = I Z <t — hy + 1)

¢ t=max(m, h,—1)

“Can; blo-01_5_00L—m|blo_01_5_00
where

Pt—>rn|blo_01_S_00
min(lo—1,t—m+1)
k=1

PR —

lo—1—k pt—lo+1_(n—1)(n—1—t)
Psucl_fe Psucl_e To

k
. Psucl_ft

CAh; |blo_01_5_00

- hi—l 7’L—h7j
TANAR =1/ \m = AR

d) ComputingP,cj00: Recalling that in the matching
process Markov chain, staté,,. is an absorbing state, so this
transition probability is computed without considerationran

h,—1
13 ho —1 1
P - o U 1— Psuc ho—l—'u,'
suc|00 h; ; < ” ) u+1 suc_ft( —ft)
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f) ComputingP,, 0110:: In this case, input remains un-
matched, while outpuj is already matched. Then

n—1
n—1
Pblo_01|01 = Z < " )CAhi|blo_01_01Pt—>m|blo_01_01
t=m
where
t—m—+1 ¢ 1
_ _ — 1\
B mppto01 01 = Z <k> <1 T 1>(m 1!

k=1
LS P opg Y
- <1 - t%) (M!S 4 (m — 1S
n(n—1—t)

t
) Psuc_Opo
n
1—=§

Psuc_O =

n
CAthlo_Ol_Ol = Ah: — 1 m — Ah. )

g) ComputingP,i,_11j01: In this case inpuf gets matched
while output;j has already been matched at the beginning of
the iteration

n—1
n—1 1 "
Prio_11j01 = Z < u )u—_HPsﬁc_o(l -

u=0

n—1—u
Psuc_O) .

Next we consider the cases where inpistalready matched,
while output j is still unmatched. Once input has been
matched, for the iterations thereafter, we are interested only in
the state of output, i.e., whether it is matched or unmatched.

h) ComputingP,i._10j10: In this case input: is already
matched, while outpuf remains unmatched at the end of the
iteration. Then

n—1 i n—nh,+1
Pyio_10110 = < m ) > <t—h +1>
t=max(ho—1,m) °©
“Pang|sto_10_10Pi—mbio_10_10

where

t—lo+1 _(n—1)(n—t) ph,—1
Psucl_e o Psucl_fe

h, —1\[(t—h,+1
(5 Catan)
; .
()
i) ComputingP,i, 11)10- In this case, outputj gets
matched at the end of the iteration. This is feasible only if at

_ m
Py bio_10_10 = M!S}

and

Pan,bto_10.10 =

e) ComputingP,i, 1100 Then, By, 11100 1S computed least one ofjith queues of thé, — 1 inputs in setZ” succeed

from the boundary condition as

Piio_11100 = 1= (Poio_0000 + Poio_01]00 T Poio_10]00 +Psucjoo)-

Now we consider the cases where outpuhas already

in the first stage of contention at their respective inputs
Pb10_11|10 =1- (1 -

The states of the switch at the end of each

h,—1
Psucl_ft) ' .

iteration

been matched, while input is still unmatched. Note that (n(¢), hi(¢), ho(¢), z;x;) can be viewed as a weighted
in this case the tagged input qued¥, 5) is no longer tree with the nodes of the tree corresponding to the switch
under consideration for matching because oujpist already states. The root of the tree is the initial state of the switch

matched.

(N, h;, h,, 00). All states in levek of the tree correspond to
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the states of the switch at the end of th#h iteration of the —o-: analysis
PIM algorithm. Weights are assigned to the arcs between the S » —+-: simulation
states and are equal to the transition probabiliﬂgg,_dw“ij ‘
O Poucle,,;- EQCh Statén(¢), hi(¢), ho(9), zix;) is assigned 1
a probablllty Pr(n(¢), hi(¢), ho(d), z;2;) equal to the
product of the transition probabilities along the arcs from
the root to the state. The probabilities,,_oojm(h;, k) ;Ed’:lo.s\

Pblo O1|H (hi, ho)r Pblo 10|H (R, ho)r and Psuc|H(h ho) at the g’o 4
end of ® iterations of the PIM algorithm can be computed ag
0.2
Pblo_aciacj|H(hi,ho) 01
- 3 Pr(n(®), hi(®), ho(®), ;) 8 ~ o

n(®), hi (D), ho (P)
0.5

Psuc|H(h7-, ho) 1.5 1 03
iteration 0.1
= > Pr(n(®), hi(®), ho(®), 11.4c). load
(DY, hi (D), ho () Fig. 7. The throughput of a 4« 4 PIM switch, as a function of offered

load, with a buffer sizeh; = 10.

C. Solving the Markov Chain ' —o—: analysis
. . —+—: simulation
As can be seen from the above equatiofisand 7y ¢ must

be known in advance in order to compute the steady-state
probabilities. In the Appendix, we give detailed procedures
to derive the computation formulas for these parameters. The.s
steady-state probabilities are given by

20.6-
£
2
b; % 20.4 :
”°:1/ 1430 [L e s o,
i=1 j=1 '
7 [oN
. 3 .
T =7TOH04j, forl1 <i<ib; (16) 0.9
Jj=1
0.5
where iteration 1 01 load
. Fig. 8. The throughput of a & 8 PIM switch, as a function of offered
Ag(I = D)~ for i = b, load, with a buffer sizeb; = 10.
v = AQ(I Al—Oéb Do) , fori=0; —1 .
T Ao(I - A — a7+1A0) , for2<i<b, —2 respectively, then
CQ(I A — CYQA()) s for i = 1. b

p=Ano(1—(Bo/A)e —i—ZmS—i—S
Recalling the definitions of the matrice appear dn, the =1
elements of this matrice are functions #f and wie. This

naturally suggests an iterative solution [16]. Initiaty, is set Q= Z Ime
to 1 — A, which corresponds to the case that there is no new =1
arriving cell at thetagged input queuat the beginning of a Ploss = my; c.

time slot, andr; e is approximated byl — 1/N)Aro. Then the Using Little’s theorem [21] which holds for a queueing
nextr, is obtained by using (15) and compute the new by system in steady-states, the mean cell délayhe mean queue
(16). This iterating process continues until theconverge to length@, and the queue’s throughpptare related together as
a fixed point. Finally, the values of steady-state probabilitidellows:

m; (1 < ¢ < b;) are computed by (16). D=0/p.

D. Computing the Performance Metrics V. NUMERICAL RESULTS

Once the steady-state probabilities are known, then in-Both mathematical analysis and simulation results are pre-
teresting performance parameters, such as throughput, msented in this section in order to investigate the accuracy of the
queue length and mean cell loss probability can be computaldove queueing model. Figs. 7-9 show the switch throughput
directly by using the known parameters. let, and P, be as a function of offered load for PIM switch sizes 4, 8,
throughput, mean queue length, and mean cell loss probabiliyd 16, with various PIM scheduling iteration numbers 1, 2,
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—-o-: analysis . -o-: analysis
—+—: simulation : ) —+—: simulation

throughput

0.9

0.5

N N 1 . .
iteration 1 01 load iteration 0.1 load

Fig. 11. The mean cell delay of a 8 8 PIM switch, as a function of

Fig. 9. The throughput of a 1& 16 PIM switch, as a function of offered ¢ "|0ad. with a buffer sizé: = 10

load, with a buffer sizeh; = 10.
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Fig. 10. The mean cell delay of a # 4 PIM switch, as a function of Fig.- 12. The mean cell delay of a 16 16 PIM switch, as a function of
offered load, with a buffer sizé; = 10. offered load, with a buffer sizé; = 10.

and 3, respectively. It can be seen that when the switch sizbich indicates that PIM switches with single iteration PIM
increases, the throughput of the switch decreases under hégheduling will be overloaded when the traffic load is greater
offered load (greater than 60% when maximum iteration is ihan 60%. However, for two and three iteration PIM, this
Also from this figure, we can see that the saturation throughpaterloaded traffic poinis about 0.8. This phenomenon can
will increase as the PIM scheduling iteration increases. dtso be observed in Figs. 7-9. Notice that when the traffic
is expected that with more iterations, more HOL cells gdébad is extremely low, such as 0.1, all curves cluster into
matched during a scheduling iteration. The curves show thatsingle point. It is not difficult to understand that, under
three iterations are enough to get a high throughpf60%. low traffic load, the opportunity that more than one HOL cell
Comparing Figs. 7-9 with Fig. 2, we can see that even undmmtends for a common input/output is small. That is, single
saturated traffic loads, our queueing model approximates fiteration PIM scheduling is typically enough to find a maximal
original system quite well. matching. When the traffic load grows, the chances of conflicts
Figs. 10-12 show the mean cell delay as a function @fcrease and more iterations are needed using PIM scheduling
offered load X for the different PIM switch sizes 4, 8, andto achieve a maximal matching.
16 with various PIM iteration numbers one, two, and three. In Fig. 13, the mean cell loss probabilities of PIM switches
The figures indicate that the mean cell delay increases as With queue size of ten cells are given as a function of offered
switch size increases and also as the offered load increases.|Badl. It can be seen that, for a medium size PIM switch with
when the number of PIM scheduling iterations is increaseithree iterations PIM scheduling (such as 26L6) with traffic
even from one to two, the mean delay increased slowlgad less than 60%, a buffer size of 10 cells per queue is
with the traffic load as compared with just one iteratiorsufficient to guarantee a cell loss probabilityl0—2.
For single iteration PIM scheduling, the mean cell delay As mentioned in the introduction of this paper, we are
increases dramatically when the offered load exceeds 608%tending these results to more realistic traffic patterns. This
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~0~: switch size N=4 by Il = [no, 71, 72, --+, 7, -+, 7y, ], Where every element
—+—: switch size N=8 - _ l 0i t
~* switch size N=16 ™ = [r@,1,1), 7@, 1,2, T, v, w1 > 0 is a row vector
‘ of size N2, and g is a scalar.
From the definition of the transition probability matrix, we
know that

7 = 11. (17)

By expanding (17), we have

moC1 + 7. Co =g (18)

19Co + 11 A1 + 7m0 Ao =M1 (29)

i 1A + m AL + i1 Ao =m, forl <i<b, —1(20)
Ty,—2 Ao + My, 1 AL +my, Do =m0y, 1 (21)
Ty, —1As + 1y, D1 =75, (22)

1 01

Fig. 13. The mean cell loss probability of a PIM switch, as a function of INn order to solve the linear equations above, we note that
offered load, with a buffer sizé; = 10. oncerg andm; are known, the remaining; (1 < ¢ < b;) can
. _ . be solved by substitute the known ones into (20)—(22) step
comphcate; the mathematical analysis, but would also Ieadt}g step. The key problem in solving these linear equations
more practical result becomes how to find the valuesof and«;. Fortunately, the
special structure of facilitates our solving of these equations.
VI.  CONCLUSION As mentioned in Section IV-AZ is a QBD process which
A gueueing model for the performance analysis of a multipleolds an important attribute that in moving from a state to a
input queued ATM switch with PIM scheduling under randorhigher-level state, the chain must visit all intermediate levels
traffic loads has been presented. The queueing model providédeast once. More detalil attributes in our case are:
a rather general method in analyzing such ATM switches in1) for any=; (0 < ¢ < b;), it appears in three equations;
terms of throughput, mean queue length, mean cell delay.2) for =, and ., which we notate aboundary probabil-
and mean cell loss probability given the switch size, queues’ ities, however, they appear in two equations.
buffer size, and offered load. As seen from Section V, thgtjlize the attribute of thédoundary probabilitiesr,, , we can

analytical results of the queueing model is able to approximai@pressr, as function ofr, _; from (22)
the simulation results satisfactorily. ' '

The contribution of this paper is twofold. First, the through- T, =, —1A2(I — Dy) 7t (23)
put of an ATM switch with multiple iteration PIM scheduling
in case of saturated traffic load is analyzed mathematical
Second, a theoretical analysis for various performance para
eters in_c_luding throughpgt, mean cell delay, and mean cell loss Ty, _1 = 7y, _9Ag(I — Ay — ay, Do) 7. (24)
probability of an ATM switch using a PIM scheduling scheme
is presented. Such theoretical analysis is lacking in existiggmilarly, 7; (2 <4 < b; —2) can be expressed as function of
literature on ATM switches with PIM or variations of PIM;—1 by further the operations recursively
scheduling [7], [9]-[12]. _ 1

Several assumptions were made in order to make the origi- mi = M1 Ao (I = A1 — au, Ao) (25)
nal switch model tractable for analysis. The most importapet «; (2 < i < b;) be aN? x N2 matrix defined as
is the uniform traffic assumption, i.e., cells arrive at each
input according to an.i.d. Bernoulli process, and the output '
destinations of arriving cells are uniformly distributed over all % = § A2(/ — A1 — ay, Do)t fori= bi —1
outputs. We are currently working on extending the model for Al = Ay — aipa Ag) ™", for2<i<b —2.
ATM switches with bursty and correlated traffic. Now 7o can be written as

%:Jbstitute (23) into (21)5,—1 can be expressed as function
Ty —2

AQ(I — .Dl)_l7 fori=1b;

APPENDIX Ty = T100. (26)

COMPUTATIONS OF THE STEADY-STATE PROBABILITIES To replacer, in (19) by (26) and rearrange the equation, we

Here we give the procedures to compute the steady-sthtere
probabilities of the Markov chair. o
Given thatr(; ., 4, iS the steady-state probability of the m = moCs(I — Ay — azAo) . (27)
state (I, wi, w,), wherel is the length of the tagged input, o consistent with the denotation of (2<i<b) we
queue,w; is the length of the virtual HOL input queue, yafine ay as T T
and w, is the length of the virtual HOL output queue. The '
steady-state probability vector of the Markov chéins given ar = Co(I — Ay — anAo)™t.
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Note thate; is a row vector of length aiVZ at this time. Now [22] M. Abramowitz and I. A. Stegun, EdsHandbook of Mathematical

we can express a; (1 <i< bi) as function ofrg Functior!s with Formulas, Graphs, and Mathematical TableNew
York: Wiley, 1972.

[23] L. Jacob and A. Kumar, “Saturated throughput analysis of an input

T
o ) F ) queueing ATM switch with multiclass bursty traffic/EEE Trans.
i = To H aj, forl <4 <b (28) Commun.yol. 43, pp. 757-761, Apr. 1995.
Jj=1 [24] X. R. Cao and D. Towsley, “A performance model for ATM switches
b with general packet length distribution$ZEE/ACM Trans. Networking,
By utilizing the condition thatr + > ;" | me = 1, we get vol. 3, pp. 299-309, June 1995.

[25] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” Froc. IEEE INFOCOM ’96,

bi 7
ro=1 1+ Z H aje |. (29) 1996, vol. 1, pp. 296-302.
i=1 j=1

Oncerg is known, all other state probabilities can be computed
by (28) Ge Nong (S'97) received the B.E. degree from

) Nanling Aeronautical Institute, JiangShu, China,
in 1992 and the M.E. degree from South China
University of Science and Technology, GuangDong,
China, in 1995, all in computer engineering. He is
currently working toward the Ph.D. degree in the
Department of Computer Science, The Hong Kong
University of Science and Technology (HKUST),
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